The limit case in a nonlocal $p$-Laplacian equation with dynamical boundary conditions

Authors

  • Eylem Öztürk Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey

DOI:

https://doi.org/10.33044/revuma.4631

Abstract

In this paper we deal with the limit as $p\to \infty$ for the nonlocal analogous to the $p$-Laplacian evolution with dynamic boundary conditions. Our main result demonstrates this limit in both the elliptic and parabolic cases. We are interested in smooth and singular kernels and show the existence and uniqueness of a limit solution. We obtain that the limit solution of the elliptic problem turns out to be also a viscosity solution of a corresponding problem. We prove that the natural energy functionals associated with this problem converge, in the sense of Mosco, to a limit functional and therefore we obtain convergence of solutions to the evolution problems in the parabolic case. For the limit problem, we provide examples of explicit solutions for some particular data.

Downloads

Download data is not yet available.

References

F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, The limit as $p→∞$ in a nonlocal $p$-Laplacian evolution equation: a nonlocal approximation of a model for sandpiles, Calc. Var. Partial Differential Equations 35 no. 3 (2009), 279–316.  DOI  MR  Zbl

F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, A nonlocal $p$-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal. 40 no. 5 (2009), 1815–1851.  DOI  MR  Zbl

F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations, J. Evol. Equ. 8 no. 1 (2008), 189–215.  DOI  MR  Zbl

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, and J. J. Toledo-Melero, Nonlocal diffusion problems, Math. Surv. Monogr. 165, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.  DOI  MR  Zbl

G. Aronsson, L. C. Evans, and Y. Wu, Fast/slow diffusion and growing sandpiles, J. Differential Equations 131 no. 2 (1996), 304–335.  DOI  MR  Zbl

H. Attouch, Familles d'opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura Appl. (4) 120 (1979), 35–111.  DOI  MR  Zbl

P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: stationary solutions in higher space dimensions, J. Statist. Phys. 95 no. 5-6 (1999), 1119–1139.  DOI  MR  Zbl

P. W. Bates, P. C. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138 no. 2 (1997), 105–136.  DOI  MR  Zbl

P. M. Berná and J. D. Rossi, Nonlocal diffusion equations with dynamical boundary conditions, Nonlinear Anal. 195 (2020), article no. 111751, 25 pp.  DOI  MR  Zbl

T. Bhattacharya, E. DiBenedetto, and J. Manfredi, Limits as $p→∞$ of $Δ_pu_p=f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, special issue (1991), 15–68.  MR

H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 no. 1 (1968), 115–175.  MR  Zbl Available at http://www.numdam.org/item?id=AIF_1968__18_1_115_0.

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies 5, Notas de Matemática 50, North-Holland, Amsterdam-London; American Elsevier, New York, 1973.  MR  Zbl

H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal. 9 (1972), 63–74.  DOI  MR  Zbl

C. Carrillo and P. Fife, Spatial effects in discrete generation population models, J. Math. Biol. 50 no. 2 (2005), 161–188.  DOI  MR  Zbl

A. Chambolle, E. Lindgren, and R. Monneau, A Hölder infinity Laplacian, ESAIM Control Optim. Calc. Var. 18 no. 3 (2012), 799–835.  DOI  MR  Zbl

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations 2 no. 1 (1997), 125–160.  DOI  MR  Zbl

C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations 234 no. 2 (2007), 360–390.  DOI  MR  Zbl

C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal. 187 no. 1 (2008), 137–156.  DOI  MR  Zbl

L. C. Evans, M. Feldman, and R. F. Gariepy, Fast/slow diffusion and collapsing sandpiles, J. Differential Equations 137 no. 1 (1997), 166–209.  DOI  MR  Zbl

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in nonlinear analysis, Springer, Berlin, 2003, pp. 153–191.  MR  Zbl

P. Fife and X. Wang, A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions, Adv. Differential Equations 3 no. 1 (1998), 85–110.  DOI  MR  Zbl

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 no. 1-2 (2014), 795–826.  DOI  MR  Zbl

J. M. Mazón, M. Solera-Diana, and J. J. Toledo-Melero, Variational and diffusion problems in random walk spaces, Prog. Nonlinear Differ. Equ. Appl. 103, Birkhäuser, Cham, 2023.  DOI  MR  Zbl

U. Mosco, Approximation of the solutions of some variational inequalities, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 373–394; erratum: 21 (1967), 765.  MR  Zbl

U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585.  DOI  MR  Zbl

E. Öztürk and J. D. Rossi, Limit for the $p$-Laplacian equation with dynamical boundary conditions, Electron. J. Differential Equations no. 1, Special issue (2021), 135–147.  DOI  MR

M. Solera and J. Toledo, Nonlocal doubly nonlinear diffusion problems with nonlinear boundary conditions, J. Evol. Equ. 23 no. 2 (2023), article no. 24, 83 pp.  DOI  MR  Zbl

X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations 183 no. 2 (2002), 434–461.  DOI  MR  Zbl

L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neuronal networks, J. Differential Equations 197 no. 1 (2004), 162–196.  DOI  MR  Zbl

Downloads

Published

2024-11-14

Issue

Section

Article