Weakly convex and convex domination numbers for generalized Petersen and flower snark graphs
DOI:
https://doi.org/10.33044/revuma.v61n2a16Abstract
We consider the weakly convex and convex domination numbers for two classes of graphs: generalized Petersen graphs and flower snark graphs. For a given generalized Petersen graph $GP(n,k)$, we prove that if $k=1$ and $n\geq 4$ then both the weakly convex domination number $\gamma_\mathit{wcon}(GP(n,k))$ and the convex domination number $\gamma_\mathit{con}(GP(n,k))$ are equal to $n$. For $k\geq 2$ and $n\geq 13$, $\gamma_\mathit{wcon}(GP(n,k))=\gamma_\mathit{con}(GP(n,k))=2n$, which is the order of $GP(n,k)$. Special cases for smaller graphs are solved by the exact method. For a flower snark graph $J_n$, where $n$ is odd and $n\geq 5$, we prove that $\gamma_\mathit{wcon}(J_n)=2n$ and $\gamma_\mathit{con}(J_n)=4n$.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Revista de la Unión Matemática Argentina
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal. The Journal may retract the paper after publication if clear evidence is found that the findings are unreliable as a result of misconduct or honest error.