New opportunities for conservation and restoration in a degraded rural-urban landscape of the Maule region
Keywords:
Landscape, Green Infrastructure, Satellite Images, Conservation, RestorationAbstract
Ecological Infrastructure is an instrumental concept that proposes an intercon- nected network of natural areas that are key to maintain biodiversity and provide ecosystem services. In Chile, seven of its sixteen administrative regions have Regional Ecological Infrastructure (IER) plans that define natural areas to be con- served and restored. The Maule region has had its IER since 2018, however, its conservation and restoration areas are concentrated in the coastal and Andean zone; and the longitudinal valley area is practically empty. In this work, the land- scape was evaluated with data of higher detail (Sentinel) than that used in the design of the IER (Landsat), to detect new opportunities for conservation and / or restoration, and evaluate the potential improvement of the connectivity of the landscape to local scale. The results show that in the longitudinal valley domi- nated by crops there are small fragments with natural cover that represent new opportunities to conserve in this area representing 33,000 ha, and that 46,000 ha of the 82,000 ha already allocated by EI for their conservation, require restoration actions. This approach can be useful for planning and management at the local level in regions that have REIs, especially in localities that have few conservation or restoration areas.
Downloads
References
Aguayo, M., Pauchard, A., Azócar, G. y Parra, O. (2009). Cambios del uso del suelo en el centro sur de Chile a fines del siglo XX. Entendiendo la dinámica espacial y temporal del paisaje. Revista Chilena de Historia Natural, 82(3), pp. 361-374. Recuperado de: http://dx.doi.org/10.4067/S0716-078X2009000300004
Agencia de Ecología Urbana de Barcelona (2010). Plan de Indicadores de Sostenibilidad Urbana de Vitoria-Gasteiz (Informe n°1). Departamento de Medio Ambiente del Ayuntamiento de Vitoria-Gasteiz. Recuperado de: https://www.vito- ria-gasteiz.org/docs/wb021/contenidosEstaticos/adjuntos/es/89/14/38914.pdf
Aguilera, F. (2011). Aplicación de métricas de ecología del paisaje para el análisis de patrones de ocupación urbana en el Área Metropolitana de Granada. Anales de Geografía De La Universidad Complutense, 30(2), pp. 9-29. Recuperado de: https://revistas.ucm.es/index.php/AGUC/article/view/AGUC1010220009A
Altamirano, A., Miranda, A., Meli, P., Dehennin, J., Muys, B., Prado, M., Catalán, G., Smith-Ramírez, C., Bustamante-Sánchez, M., Lisón, F. y Rey-Benayas, J. (2019). Spatial congruence among indicators of recovery completeness in Mediterranean forest landscape: Implications for planning large-scale restoration. Ecological Indicators, 102, pp. 752-759. Recuperado de: https://doi.org/10.1016/j. ecolind.2019.03.046
Altamirano, A. y Lara, A. (2010). Deforestación en ecosistemas templados de la precordillera andina del centro-sur de Chile. Bosque (Valdivia), 31(1), pp. 53-64. Recuperado de: http://dx.doi.org/10.4067/S0717-92002010000100007
Álvarez, D. (2018). Desafíos y oportunidades para la conservación para la conservación de la biodiversidad urbana: un enfoque desde la Infraestructura Ecológica. En Ortiz, J. y Lazzoni, I. (Eds.) (2018). (pp. 49-77). Biodiversidad urbana en Chile: Estado del arte y los desafíos futuros. Santiago de Chile: Universidad Central.
Arriagada, L., Rojas, O., Arumi, J., Rojas, C., Munizaga, J., Ureta, F. y Farias,
L. (2020). Cumulative and synergistc effects of multiple anthropic stressors: Spatio-temporal variability of carbón flows and particulate organic nitrogen in a Mediterranean basin. Science of The Total Environment, en prensa.
Asgarian, A., Soffianian, A. y Pourmanafi, S. (2016). Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Computers and Electronics in Agriculture, 127, pp. 531-540. Recuperado de: https://doi.org/10.1016/j.com- pag.2016.07.019
Awuah, K., Nölke, N., Freudenberg, M., Diwakara, B. N., Tewari, V.P. & Kleinn,
C. (2018). Spatial resolution and landscape structure along an urban-rural gra- dient: Do they relate to remote sensing classification accuracy? – A case study in the megacity of Bengaluru, India. Remote Sensing Applications: Society and Environment, 12, pp. 89-98. Recuperado de: https://doi.org/10.1016/j. rsase.2018.10.003
Benedict, M. A. & McMahon, E. T. (2000). Green Infrastructure. Planning Commissioners Journal, 37(4), pp. 4-7. Recuperado de: http://plannersweb.com/ wp-content/uploads/2000/01/372.pdf
Calleja, J., Escola, M., Carvalho, J., Forcadell, J., Serrano, E. y Bartolomé, J. (2019). Cattle Grazing Fails to Control Shrub Encroachment in Mediterranean Landscapes. Rangeland Ecology & Management, 72, pp. 803-811. Recuperado de: https://doi.org/10.1016/j.rama.2019.04.005
CEA (2014). La infraestructura verde urbana de Vitoria-Gasteiz. Documento de Propuesta. Recuperado de: https://www.vitoria-gasteiz.org/wb021/http/contenido- sEstaticos/adjuntos/eu/32/95/53295.pdf
Chi, Y., Xie, Z. & Wang, J. (2019). Establishing archipelagic landscape eco- logical network with full connectivity at dual spatial scales. Ecological Modelling, 399, pp. 54-65. Recuperado de: https://ideas.repec.org/a/eee/ecomod/ v399y2019icp54-65.html
De la Barrera, F., Barraza, F., Favier, P., Ruiz, V. y Quense, J. (2018). Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosys- tems. Science of The Total Environment, pp. 637-638; 1526-1536. Recuperado de: https://www.researchgate.net/publication/325312071_Megafires_in_Chile_2017_ Monitoring_multiscale_environmental_impacts_of_burned_ecosystems
De La Barrera, F. & Henríquez, C. (2017). Vegetation cover change in growing urban agglomerations in Chile. Ecological Indicators, 81, pp. 265-273. Recuperado de: https://doi.org/10.1016/j.ecolind.2017.05.067
Dobbs, C., Escobedo, F. J., Clerici, N., De la Barrera, F., Eleuterio, A. A., MacGregor-Fors, I., Reyes-Peacke,S., Vásquez, A., Zea, J. & Hernández, H. J. (2019). Urban ecosystem Services in Latin America: mismatch between glo- bal concepts and regional realities?. Urban ecosystems, 22(1), pp. 173-187. Recuperado de: https://www.springerprofessional.de/en/urban-ecosystem-servi- ces-in-latin-america-mismatch-between-globa/16168616
Duane, A., Aquilué, N., Canelles, Q., Morán-Ordoñez, A., De Cáceres, M.
& Brotons, L. (2019). Adapting prescribed burns to future climate change inMediterranean landscapes. Science of The Total Environment, 677, pp. 68-83. Recuperado de: https://doi.org/10.1016/j.scitotenv.2019.04.348
Echeverría, C., Fuentes, R., De la Barrera, F., Aguayo, M., Engler, A., Garrido, P., Vega, D. y Herrera, A. (2018). Informe final Proyecto “Planificación ecoló- gica de la infraestructura ecológica de la biodiversidad y sus servicios ecosistémi- cos y programa regional de prioridades de restauración ecológica en el contexto de los incendios de la temporada 2016-2017: aplicación en Región del Maule”. Licitación 608837-95-LP17. Universidad de Concepción, Concepción. 130 p.
Echeverría, C., Newton, A., Nahuelhual, L., Coomes, D. & Rey-Benayas, J, (2012). How landscapes change: Integration of spatial patterns and human pro- cesses in temperature landscapes of southern Chile. Aplied Geography, 32, pp. 822-831. Recuperado de: https://doi.org/10.1016/j.apgeog.2011.08.014
Echeverría, C., Coomes, D., Hall, M. & Newton, A. (2008). Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in sou- thern Chile. Ecological Modelling, 212, pp. 439-449. Recuperado de: https://doi. org/10.1016/j.ecolmodel.2007.10.045
François, J., Reyes, J. y Pérez, A. (2003). Evaluación de la confiabilidad temática de mapas o de imágenes clasificadas: una revisión. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM, 51, pp. 53-72. Recuperado de: http:// www.investigacionesgeograficas.unam.mx/index.php/rig/article/view/30414/0
Fernández, I. y De la Barrera, F. (2018). Biodiversidad urbana, servicios ecosis- témicos y planificación ecológica: un enfoque desde la ecología del paisaje. En Ortiz, J. y Lazzoni, I. (Eds.) Biodiversidad urbana en Chile: Estado del arte y los desafíos futuros. Santiago de Chile: Universidad Central.
García, F. y Abad, J. (2014). Los corredores ecológicos y su importancia ambien- tal: Propuestas de actuación para fomentar la permeabilidad y conectividad aplica- das al entorno del río Cardeña (Ávila y Segovia). Observando Medioambiental, 17, pp. 253-298. Recuperado de: https://doi.org/10.5209/rev_OBMD.2014.v17.47194
Gopalakrishnan, V., Hirabayashi, S., Ziv, G. & Bakshi, B. (2018). Air quality and human health impacts of grasslands and shrublands in the United States. Atmospheric Environment, 108, pp. 193-199. Recuperado de: https://doi. org/10.1016/j.atmosenv.2018.03.039
Haddad, N., Brudvig, L., Clobert, J., Davies, K., González, A., Holt, R., Lovejoy, T., Sexton, J., Austin, M., Collins, C., Cook, W., Damschen, E., Ewers, R., Foster, B., Jenkins, C., King, A., Laurance, W., Levey, D., Margules, Chris., Melbourne, B., Nicholls, A., Orrock, J., Song, D. & Townshend, J. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sciencie Advances, 1(2). DOI: 10.1126/sciadv.1500052
Heilmayr, R., Echeverría, C., Fuentes, R. y Lambin, E. (2016). A plantation-do- minated forest transition in Chile. Applied Geography, 75, pp. 71-82. Recuperado de: https://doi.org/10.1016/j.apgeog.2016.07.014
Henríquez-Dole, L., Usón, T., Vicuña, S., Henríquez, C., Gironás, J. & Meza,
F. (2018). Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin, Chile. Land Use Policy, 78, pp. 353-366. Recuperado de: https://doi.org/10.1016/j.landuse- pol.2018.06.045
Hernández, A., Miranda, M., Arellano, E., Saura, S. y Ovalle, C. (2015). Landscape dynamics and their effect on the functional connectivity of a Mediterranean lands- cape in Chile. Ecological Indicators, 48, pp. 98-206. Recuperado de: https://doi. org/10.1016/j.ecolind.2014.08.010
Iverson, L., Echeverría, C., Nahuelhual, L. & Luque, S. (2014). Ecosystem ser- vices in changing landscapes: An introduction. Springer, 29, pp. 181-186. DOI 10.1007/s10980-014-9993-2
Jucker, M., Daliakopoulos, I., Eckert, S., Hodel, E. & Liniger, H. (2017). Assessment of land degradation in Mediterranean forests and grazing lands using a landscape unit approach and the normalized difference vegetation index. Applied Geography, 86, pp. 8-21. Recuperado de: https://doi.org/10.1016/j. apgeog.2017.06.017
Kaltsas, D., Panayiotou, E., Kougioumoutzis, K. & Chatzaki, M. (2019). Overgrazed shrublands support high taxonomic, functional and temporal diver- sity of Mediterranean ground spider assemblages. Ecological Indicators, 103, pp. 599-609. Recuperado de: https://doi.org/10.1016/j.ecolind.2019.04.024
Khosravi, R. & Hermami, M. (2019). Identifying landscape species for ecologi- cal planning. Ecological Indicator, 99, pp. 140-148. Recuperado de: https://doi. org/10.1016/j.ecolind.2018.12.010
Lara, A., Echeverría, C. y Reyes, R. (2002). Bosques Nativos. En Instituto de Asuntos Públicos, (Eds.), Informe País. Estado del Medioambiente en Chile (pp. 127-160). Santiago, Chile: Universidad de Chile.
Lasanta, T., Khorchani, M., Pérez-Cabello, F., Errea, P., Sáenz-Blanco, R. & Nadal-Romero, E. (2018). Clearing shrubland and extensive livestock farming: Active prevention to control wildfires in the Mediterranean mountains. Journal of Environmental Management, 227, pp. 256-266. Recuperado de: https://doi. org/10.1016/j.jenvman.2018.08.104
Li, S. & Yang, B. (2015). Introducing a new method for assessing spatially explicit processes of landscape fragmentation. Ecological Indicators, 56, pp. 116-124. Recuperado de: https://doi.org/10.1016/j.ecolind.2015.03.031
Locher-Krause, K., Volk, M., Waske, B., Thonfeld, F. & Lautenbach, S. (2017). Expanding temporal resolution in landscape transformations: Insights from a land- sat-based case study in Southern Chile. Ecological Indicators, 75, pp. 132-144. Recuperado de: https://doi.org/10.1016/j.ecolind.2016.12.036
Manuschevich, D., Sarricolea, P. & Galleguillos, M. (2019). Integrating socio-eco- logical dynamics into land use policy outcomes: A spatial scenario approach for native forest conservation in south-central Chile. Land Use Policy, 84, pp. 31-42. Recuperado de: https://doi.org/10.1016/j.landusepol.2019.01.042
Matteucci, S. (2004). Los índices de configuración del mosaico como herramienta para el estudio de las relaciones patrón-proceso. En Buzai, G. (Comp.), Memorias del Primer Seminario Argentino de Geografía Cuantitativa (pp. 1-28). Recuperado de: http://server.ege.fcen.uba.ar/ecoregional/Docs/teorico/Matteucci%202004%20 Metricas.pdf
McGarical, K. & Marks, B. (1995). FRAGSTATS. Spatial Pattern Analysis Program for Quantifying Landscape Structure. Recuperado de: https://doi. org/10.2737/PNW-GTR-351
Meng, Q. (2015). Regional landscape mapping through a method of chain stan- dardization of Landsat images. Landscape and Urban Planning, 134, pp. 1-9. Recuperado de: https://doi.org/10.1016/j.landurbplan.2014.10.004
Miranda, A., Altamirano, A., Cayuela, L., Lara, A. & González, M. (2016). Native forest loss in the Chilean biodiversity hotspot: revealing evidence. Regional Environmental Change, 17, pp. 285-297. Recuperado de: https://doi.org/10.1007/ s10113-016-1010-7
Morales, C., Acevedo, J., Araníbar, Z. y Ibaceta, L. (2016). Chile: Los costos de inacción de la desertificación y degradación de las tierras. Resultados de un estudio. Santiago, Chile: Ediciones e impresiones Copygraph.
Moreno, R., Zamora, R., Molina, J., Vásquez, A. & Herrera, M. (2011). Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecological Informatics, 6, pp. 364-370. Recuperado de: https://doi.org/10.1016/j.ecoinf.2011.07.003
Moreno-Mateos, D. & Comin, F.A. (2010). Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural lands- capes. Journal of Environmental Management, 91(11), pp. 2087-2095. Recuperado de: https://doi.org/10.1016/j.jenvman.2010.06.002
Olivera-Guerra, L., Mattar, C. & Galleguillos, M. (2014). Estimation of real eva- potranspiration and its variation in Mediterranean landscapes of central-southern Chile. International Journal of Applied Earth Observation and Geoinformation, 28, pp. 160-169. Recuperado de: https://doi.org/10.1016/j.jag.2013.11.012
Pietsch, M. (2018). Contribution of connectivity metrics to the assessment of biodiversity –Some methodological considerations to improve landscape. Planning Ecological Indicators, 94(2), pp. 116-127. Recuperado de: https://doi. org/10.1016/j.ecolind.2017.05.052
Räsänen, A. & Virtanen, T. (2019). Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Remote Sensing of Environment, 230(11207), pp. 1-13. Recuperado de: https://doi.org/10.1016/j.rse.2019.05.026
Rendenieks, Z., Terauds, A., Nikodemus, O., Brümelis, G. (2017). Comparison of input data with different spatial resolution in landscape pattern analysis-A case study from northern Latvia. Applied Geography, 83, 100-106. https://doi. org/10.1016/j.apgeog.2017.03.019
Rovere, A. y Masini, C. (2011). Diferentes enfoques de la restauración ecológica en las III Jornadas Argentinas de Ecología de Paisajes. Revista de la Asociación Argentina de Ecología de Paisajes, 2(2), pp. 95-99. Recuperado de: https://www. researchgate.net/publication/228440953_Diferentes_enfoques_de_la_restaura- cion_ecologica_en_las_III_Jornadas_Argentinas_de_Ecologia_de_Paisajes
Ruan, X., Huang, J., Williams, D., Harker, K. & Gergel, S. (2019). High spa- tial resolution landscape indicators show promise in explaining water quality in urban streams. Ecological Indicators, 103, pp. 321-330. Recuperado de: https:// doi.org/10.1016/j.ecolind.2019.03.013
Sarricolea, P., Herrera-Ossandon, M. & Meseguer-Ruiz, O. (2017). Climatic regio- nalisation of continental Chile. Journal of Maps, 13(2), pp. 66-73. Recuperado de: https://doi.org/10.1080/17445647.2016.1259592
Salinas-Zavala, C., Martínez-Rincón, R. y Morales-Zárate, M. (2017). Tendencia en el siglo XXI del Índice de Diferencias Normalizadas de Vegetación (NDVI) en la parte sur de la península de Baja California. Investigaciones Geográficas, 94, pp. 82-90. Recuperado de: https://doi.org/10.14350/rig.57214
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Diana Mancilla Ruiz, Sergio González Paz, Patricia Virano Reyes, Francisco De la Barrera Melgarejo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.