The impacts of public financing on the GDP of the municipalities of the north, northeast, and midwest of Brazil

Authors

DOI:

https://doi.org/10.52292/j.estudecon.2024.3497

Keywords:

Spatial analysis, Constitutional financing funds, North, Northeast, Midwest, Brazi

Abstract

This article analyzed the effects of the disbursements from the Constitutional Financing Funds on the level and growth of the GDP of the municipalities of the North, Northeast, and Midwest regions of Brazil. We used spatial econometrics to identify possible evidence of spatial and temporal spillovers. The models were selected using Moran’s I test for the residuals of the regressions, followed by Lagrange Multiplier tests—robust LM for spatial error and spatial-lag processes. The tests indicated that the SDEM model was appropriate for the  regression analysis on the level and growth rates. The low values and the statistical significance of the coefficients suggest that the impacts are of minor importance, with no time or spatial spillovers

Downloads

Download data is not yet available.

References

Almeida Júnior, M. F., Resende, G. M., & da Silva, A. M. A. (2007). Distribuição espacial dos fundos constitucionais de financiamento do Nordeste, Norte e Centro-Oeste. Revista de Economia, 33(2), 115-137. http://dx.doi.org/10.5380/re.v33i2.9966

Almeida Júnior, M., da Silva, A. M. A., & Resende, G. M. (2006). Uma análise dos Fundos Constitucionais de Financiamento do Nordeste (FNE), Norte (FNO) e Centro-Oeste (FCO). (IPEA, Texto para Discussão No. 1206).

Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20(1), 1-17. https://doi.org/10.1111/j.1538-4632.1988.tb00159.x

Anselin, L. (2022). Spatial econometrics. In Sergio J. Rey & Rachel S. Franklin (eds.), Handbook of Spatial Analysis in the Social Sciences, (Cap. 6, pp.101-122). Cheltenham, Reino Unido: Edward Elgar Publishing. https://doi.org/10.4337/9781789903942

Anselin, L., & Bera, A. K. (1998). Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics. In A. Ullah (Ed.), Handbook of Applied Economic Statistics. (Cap. 7, pp. 237-290). Boca Raton: CRC Press. https://doi.org/10.1201/9781482269901-36

Barro, R. J., Sala-i-Martin, X., Blanchard, O. J., & Hall, R. E. (1991). Convergence across states and regions. Brookings Papers on Economic Activity, 1, 107-182. https://doi.org/10.2307/2534639 90

Bivand, R., Millo, G., & Piras, G. (2021). A review of software for spatial econometrics in R. Mathematics, 9(11), 1276.

Bolfe, É. L., Victoria, D. D. C., Contini, E., Bayma-Silva, G., Spinelli-Araujo, L., & Gomes, D. (2016). Matopiba em crescimento agrícola: Aspectos territoriais e socioeconômicos. Revista de Política Agrícola, 25(4), 38-62. https://seer. sede.embrapa.br/index.php/RPA/article/view/1202

Burridge, P. (1980). On the Cliff‐Ord test for spatial correlation. Journal of the Royal Statistical Society: Series B (MethodoLogical), 42(1), 107-108. https://doi.org/10.1111/j.2517-6161.1980.tb01108.x

Cravo, T. A., Resende, G. M., & Carvalho, A. (2014). The impact of Brazilian regional development funds on regional economic growth: A spatial panel approach. [Conferencia]. In 54th ERSA Congress: “Regional development & globalisation: Best practices”, 26-29 August, Saint Petersburg, Russia. https://www-sre.wu.ac.at/ersa/ersaconfs/ersa14/e140826aFinal00123.pdf

da Silva, A. M. A., Resende, G. M., & Silveira Neto, R. D. M. (2007). Uma avaliação da eficácia do FNE, no período 1995-2000. Análise Econômica, 25(48), 213-241. https://doi.org/10.22456/2176-5456.10905

da Silva, A. M. A. D., Resende, G. M., & Silveira Neto, R. D. M. (2009). Eficácia do gasto público: Uma avaliação do FNE, FNO e FCO. Estudos Econômicos (São Paulo), 39(1), 89-125. https://doi.org/10.1590/S0101-41612009000100004

Dall’Erba, S., & Fang, F. (2017). Meta-analysis of the impact of European Union Structural Funds on regional growth. Regional Studies, 51(6), 822-832. https://doi.org/10.1080/00343404.2015.1100285

Dall’Erba, S., & Le Gallo, J. (2008). Regional convergence and the impact of European structural funds over 1989-1999: A spatial econometric analysis. Papers in Regional Science, 87(2), 219-244. https://doi.org/10.1111/j.1435-5957.2008.00184.x

de Souza Jr, M. L., Castro, N. R., Gilio, L., Morais, A. C. D. P., Sant, G., & de Camargo Barros, A. (2020). Mercado de trabalho do agronegócio no centro-oeste: A importância do setor para o dinamismo regional. Revista de Economia e Agronegócio, 18(1), 1-20. https://doi.org/10.25070/rea.v18i1.8426

Elhorst, J. P. (2003). Specification and estimation of spatial panel data models. International Regional Science Review, 26(3), 244-268. https://doi.org/10.1177/0160017603253791

Elhorst, J. P. (2005). Unconditional maximum likelihood estimation of linear and Log‐linear dynamic models for spatial panels. Geographical Analysis, 37(1), 85-106. https://doi.org/10.1111/j.1538-632.2005.00577.x

Elhorst, J. P. (2010). Spatial panel data models. In M. M. Fischer, & A. Getis (eds.), Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications (pp. 377-407). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-03647-7_19

Elhorst, J. P. (2012). Dynamic spatial panels: Models, methods, and inferences. Journal of Geographical Systems, 14(1), 5-28. https://doi.org/10.1007/s10109-011-0158-4

Elhorst, J. P. (2014). Spatial Panel Models. In: M. M. Fischer, M. M. & P. Nijkamp,P. (eds.) Handbook of Regional Science (Vol. 3, pp. 1637-1652). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-23430-9_86

Elhorst, J. P., Gross, M., & Tereanu, E. (2021). Cross-sectional dependence and spillovers in space and time: Where spatial econometrics and global VAR models meet. Journal of Economic Surveys, 35(1), 192-226. https://doi.org/10.1111/joes.12391

Florax, R. J., Folmer, H., & Rey, S. J. (2003). Specification searches in spatial econometrics: The relevance of Hendry’s methodology. Regional Science and Urban Economics, 33(5), 557-579. https://doi.org/10.1016/S0166-0462(03)00002-4

Gómez-Rubio, V., Bivand, R. S., & Rue, H. (2021). Estimating spatial econometrics models with integrated nested Laplace approximation. Mathematics, 9(17), 1-23. https://doi.org/10.3390/math9172044 Le Gallo, J. (2021). Cross-section spatial regression models. In: M.M. Fischer & P.

Nijkamp, P. (eds.). Handbook of Regional Science (pp. 2117-2139). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-23430-9_85

LeSage, J.P. (2008). An introduction to spatial econometrics. Revue d’Économie Industrielle, 123(3), 19-44. https://doi.org/10.4000/rei.3887

LeSage, J. P., & Pace, R. K. (2009). Introduction to Spatial Econometrics. Boca Raton: CRC Press.

Resende, G. M. (2011). Multiple dimensions of regional economic growth: The Brazilian case, 1991− 2000. Papers in Regional Science, 90(3), 629-662. https://doi.org/10.1111/j.1435-5957.2010.00336.x

Resende, G. M. (2014). Measuring micro-and macro-impacts of regional development policies: The case of the Northeast Regional Fund (FNE) industrial loans in Brazil, 2000-2006. Regional Studies, 48(4), 646-664. https://doi.org/10.1080/00343404.2012.667872

Resende, G. M., da Silva, D. F. C., & da Silva Filho, L. A. (2017). Avaliação econômica do Fundo constitucional de Financiamento do Nordeste (FNE):Uma análise espacial por tipologia da PNDR entre 1999 e 2011. Revista Econômica do Nordeste, 48(1), 9-29. https://www.bnb.gov.br/revista/index.php/ren/article/view/701/547 92

Ribeiro, L. C. D. S., Lôbo, A. S., Silva, L. D. D., & Andrade, N. F. S. (2020). Padrões de crescimento econômico dos municípios do MATOPIBA. Revista de Economia e Sociologia Rural, 58(3). https://doi.org/10.1590/1806-9479.2020.212613

Soares, R. B., Linhares, F. C., Gonçalves, M. F., & Viana, L. F. G. (2014). Fondo Constitucional de Financiamiento del Nordeste del Brasil: Efectos diferenciados sobre el crecimiento económico de los municipios. Revista Cepal No.113. https://hdl.handle.net/11362/36965

Soares, R. B., Sousa, J. M. P., & Pereira Neto, A. (2009). Avaliação de impacto do FNE no emprego, na massa salarial e no salário médio em empreendimentos financiados. Revista Econômica do Nordeste, 40(1), 217-234. https://www.bnb.gov.br/revista/index.php/ren/article/view/348/298

Vega, S. H., & Elhorst, J. P. (2013). On spatial econometric models, spillover effects, and W. [Conferencia]. In 53rd ERSA Congress: “Regional Integration: Europe, the Mediterranean and the World Economy”, 27-31 August. Palermo, Italy. http://hdl.handle.net/10419/123888

Vega, S. H., & Elhorst, J. P. (2015). The SLX model. Journal of Regional Science, 55(3), 339-363. https://doi.org/10.1111/jors.12188

Downloads

Published

2024-07-02

How to Cite

da Silva Filho, L. A. ., Azzoni, C. R. ., & Squarize Chagas, A. L. (2024). The impacts of public financing on the GDP of the municipalities of the north, northeast, and midwest of Brazil. Estudios económicos, 41(83), 70–92. https://doi.org/10.52292/j.estudecon.2024.3497

Issue

Section

Articles